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Answer all the questions:                                                                           10 x 2 = 10

1. Define an inductive set with an example. 

2. Prove that every positive integer n (except 1) is either a prime or a product of primes.

3. State and prove Euler’s theorem for real numbers.

         4. Define a Metric space.

        5. State Cantor’s intersection theorem for closed sets.

        6. Define an interior point and an open set.

         7.Give an example of a uniformly continuous function.

        8. Define a Cauchy sequence.

        9. Suppose f and g are defined on (a, b) and are both differentiable at c ( (a, b), then prove     

            that the function fg is also differentiable at c.

        10. Define total variation of a function f on 
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        Answer any five questions:                                                                                         5 x 8=40

11. Prove that the set R of all real numbers is uncountable.

12. State and prove Bolzano-Weirstass theorem for R.

         13.  Prove that every compact subset of a metric space is complete.

         14.  Let (X, d1) and (Y, d2) be metric spaces and f: X 
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Y be continuous on X. If X is compact, then prove that f (X) is a compact subset of Y.

        15.  Let (X, d1) and (Y, d2) be metric spaces and f: X 
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Y be continuous on X. Then show that a map f: X 
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Y is continuous on X if and only if f -1 (G) is open in X for every open set G in Y.

     16    Prove that in a metric space (X, d)

                    ( i ) Arbitrary union of open sets in X is open in X

                    ( ii) Arbitrary intersection of closed sets in X  is closed in X.

              17. Let f: 
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R and f have a local maximum or a local minimum at a point c.

 Then prove that f ’(c) = 0.

            18. Let f be of bounded variation on
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 and x( (a, b) Define V: 
[image: image8.wmf][

]

b

a

,

 
[image: image9.wmf]®

R as   follows: 

              V (a) = 0

           V (x) =Vf 
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, a <  x ≤ b.

           Then show that the functions V and V – f are both increasing functions on
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Answer any two questions:                                                                                                      2 x 20 = 40 

        19   State and prove Intermediate value theorem for continuous functions. 
        20.  State and prove Lagrange’s theorem for a function f : 
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  21.(a) Suppose c ( (a ,b) and two of the three integrals 
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                  exists. Then show that the third also exists and
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             (b) When do we say f is Riemann-Stieltjes integrable?

       22. (a) State and prove Unique factorization theorem for real numbers.

    (b) If F is a countable family of countable sets then show that 
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 is also countable.
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